

UIN SUNAN KALIJAGA YOGYAKARTA

FACULTY OF SCIENCE AND TECHNOLOGY

Jl. Marsda Adisucipto Yogyakarta 55281, Telp:+62274519739, Fax:+62274540971, <u>E-mail:</u> fst@uin-suka.ac.id, website: <u>http://saintek.uin-suka.ac.id/</u>

Undergraduate Programme in Physics

Telp : +62274 519739
Email : fisika@uin-suka.ac.id
Website : http://fisika.uin-suka.ac.id/

MODULE HANDBOOK

Module Name	Nano science and Nano Technology					
Module level, if applicable	Bachelor					
Code, if applicable	<u>FIS424059</u>					
Subtitle, if applicable	-					
Courses, if applicable	Composite Material (Material Komposit)					
Semester(s) in which the module is	5 th (fifth)					
taught						
Person responsible for the module	Dr. Asih Melati, M.Sc					
Lecturer(s)	Dr. Asih Melati, M.Sc					
Language	Indonesia					
Relation to curriculum	Elective course in the third year (5 th semester) Bachelor Degree					
Type of teaching, contact hours	150 minutes lectures and 120 minutes structured activities per week.					
Workload	Total workload is 90.7 hours per semester, which consists of 100 minutes lectures per					
	week for 14 weeks, 120 minutes structured activities per week, 120 minutes					
	individual study per week, in total is 16 weeks per semester, including mid exam and					
	final exam					
Credit points	3					
Requirements according to the	Create a project of science applications and minimum attendance 75 %					
examination regulations						
Recommended prerequisites	No prerequisites stated on					
Module objectives/intended learning	After completing this course, the students:					
outcomes	CO 1. Mastering the theoretical concepts and main principles of classical physics and modern physics, as well as knowledge of technology based on physics and its application and integrating it with religion					
	CO 2. Mastering mathematical, computational and instrumentation methods to solve physics problems and apply his knowledge to a broader field.					
	CO 3. Able to formulate and analyse scientific studies and research related to					
	physics CO 4. Master the basic principles of experimentation and physics measurement					
	methods to formulate physical phenomena based on observation and data					
	analysis					
Content	a. The principal and practice of Nano science and nano technology					
	b. The fabrication of nano material					
	c. The properties of nano material					
	d. The fabrication of nano material					
	e. The application of nano material					
	f. The characterization and development of nano material					
	g. The technology behind of the nano science					

UIN SUNAN KALIJAGA YOGYAKARTA

FACULTY OF SCIENCE AND TECHNOLOGY

Jl. Marsda Adisucipto Yogyakarta 55281, Telp:+62274519739, Fax:+62274540971, <u>E-mail:</u> fst@uin-suka.ac.id, website: <u>http://saintek.uin-suka.ac.id/</u>

Study and examination requirements
and forms of examination

The final mark will be weighted as follows:

NO	Assessment methods (components, activities)	Weight		
		(percentage)		
1	Final Examination	40%		
2	Mid-Term Examination	30%		
3	Class Activities : Quiz, Homework, etc.	30%		

The final assessment is expressed in the form of a letter value converted from a number value with the following categories:

NO	Number Value	Letter Value	NO	Number Value	Letter Value
1	≥ 95	Α	7	65-69.99	B/C
2	90-94.99	A-	8	60-64.99	C+
3	85-89.99	A/B	9	55-59.99	С
4	80-84.99	B+	10	50-54.99	C-
5	75-79.99	В	11	55-34.99	D
6	70-74.99	B-	12	<35	E

Media employed Reading list

White-board, Lcd Projector, e-learning (https://daring.uin-suka.ac.id/)

- 1. "Introduction to Nanoscience and Nanotechnology" by Chris Binns (Publisher: Wiley, 2010)
- 2. "Nanotechnology: Principles and Practices" by Sulabha K. Kulkarni (Publisher: CRC Press, 2017)
- 3. "Nanotechnology: Understanding Small Systems" by Ben Rogers, Jesse Adams, and Sumita Pennathur (Publisher: CRC Press, 2016)
- 4. "Nanomaterials: Synthesis, Properties, and Applications" edited by A.S. Edelstein and R.C. Cammarata (Publisher: CRC Press, 2001)
- "Nanostructures and Nanomaterials: Synthesis, Properties, and Applications" edited by Guozhong Cao (Publisher: World Scientific Publishing Company, 2004
- 6. "Handbook of Nanoscience, Engineering, and Technology" edited by William A. Goddard III, Donald W. Brenner, Sergey Edward Lyshevski, and Gerald J. lafrate (Publisher: CRC Press, 2007)

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9	PLO 10
CO 1		٧		٧					٧	
CO 2		٧		٧					٧	
CO 3		٧		٧					٧	
			٧	٧					٧	