

UIN SUNAN KALIJAGA YOGYAKARTA FACULTY OF SCIENCE AND TECHNOLOGY

Jl. Marsda Adisucipto Yogyakarta 55281, Telp:+62274519739, Fax:+62274540971, <u>E-mail:</u> fst@uin-suka.ac.id, website: <u>http://saintek.uin-suka.ac.id</u>/

Undergraduate Programme in Physics

Telp	: +62274 519739
Email	: <u>fisika@uin-suka.ac.id</u>
Website	: https://fisika.uin-suka.ac.id/id

MODULE HANDBOOK

Module Name	Geographic Information System					
Module level, if applicable	Bachelor					
Code, if applicable	FIS424031					
Subtitle, if applicable	-					
Courses, if applicable	Geographic Information System					
Semester(s) in which the module is	5 th (fifth)					
taught						
Person responsible for the module	Andi, M.Sc.					
Lecturer(s)	Andi, M.Sc					
Language	ndonesia					
Relation to curriculum	Elective course in the third year (5 th semester) Bachelor Degree					
Type of teaching, contact hours	100 minutes lectures and 120 minutes structured activities per week.					
Workload	Total workload is 90.6 hours per semester, which consists of 100 minutes lectures per					
	week for 14 weeks, 120 minutes structured activities per week, 120 minutes					
	individual study per week, in total is 16 weeks per semester, including mid exam and					
	final exam					
Credit points	2					
Requirements according to the	Minimum attendance 75%					
examination regulation	All assignments submitted					
	Attendance on time					
Recommended prerequisites	No prerequisites stated on					
Module objectives/intended learning	After completing this course, the students:					
outcomes	CO 1. Formulate physical quantities in geophysical mapping to be able to present into interpretable model maps.					
	CO 2. Analyze physical parameters in geophysical fields presented in maps to					
	explain natural phenomena.					
	CO 3. Formulate the most suitable geophysical parameters that can be presented					
	in map form and interpreted to explain natural phenomena.					
Content	1. Introduction to mapping (theory and application of mapping)					
	2. Coordinate system and Global Positioning System (GPS)					
	3. Survey design methodology and data acquisition					
	4. Properties and types of Geophysical Data					
	5. Data interpolation and extrapolation					
	6. Introduction to the Quantum Geographic Information System (QGIS)					
	7. Digital Elevation Model (DEM), 2D Model and 3D Model					
	8. QGIS application and geophysical model interpretation					
Study and examination requirements	The final mark will be weighted as follows:					
and forms of examination						

UIN SUNAN KALIJAGA YOGYAKARTA FACULTY OF SCIENCE AND TECHNOLOGY

Jl. Marsda Adisucipto Yogyakarta 55281, Telp:+62274519739, Fax:+62274540971, <u>E-mail:</u> fst@uin-suka.ac.id, website: <u>http://saintek.uin-suka.ac.id</u>/

	NO	Assessment methods (components, activities)				Weight	
						(percentage)	
	1	Final Examination					40%
	2	Mid-Term Examination					30%
	3	Class Activities : Quiz, Homework, etc.					30%
	The final assessment is expressed in the form of a letter value converted from a number value with the following categories:						
	NO	Number Value	Letter Value	NO	Number Value	Letter Value	
	1	≥ 95	А	7	65-69.99	B/C	
	2	90-94.99	A-	8	60-64.99	C+	
	3	85-89.99	A/B	9	55-59.99	С	
	4	80-84.99	B+	10	50-54.99	C-	
	5	75-79.99	В	11	55-34.99	D	
	6	70-74.99	В-	12	<35	E	
		•		·	·		
Media employed	White	-board, Lcd P	rojector, e	-learning	(<u>https://darin</u>	ng.uin-suka.ac.i	<u>id/)</u>
Reading list	1. Otto Huisman and Rolf A, 2009, Principles of Geographic Information Systems,						mation Systems,
	ITC, Enschede, The Netherlands						
	2. Ye Zhang, 2011, Introduction to geostatistics, Dept of Geology and Geophysics,						
	Ui	niversity of W	/yoming				
	3. Louise Croneborg, Keiko Saito, Michel Matera, Don McKeown, Jan van Aardt,						Jan van Aardt,
	2015, Digital Elevation Models (A Guidance Note on how Digital Elevation Model						al Elevation Models
	are created and used), International Bank for Reconstruction and Developme						nd Development
	1818 H street, NW, Washington, DC						

PLO and CO Mapping

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7	PLO 8	PLO 9
CO 1			v					v	v
CO 2			V					V	V
CO 3			v					V	V